SEABIRD, FISH, MARINE MAMMAL AND OCEANOGRAPHY COORDINATED INVESTIGATIONS (SMMOCI) IN THE CENTRAL ALEUTIAN ISLANDS, ALASKA, JULY 2009

By Donald E. Dragoo, Gary S. Drew and William R. Bechtol

Key Words: Alaska, Aleutian Islands, CTD, fishes, hydroacoustics, Kasatochi Island, Koniuji Island, marine mammals, oceanography, pelagic surveys, salinity, seabirds, temperature, thermosalinograph, Ulak Island

> U. S. Fish and Wildlife Service Alaska Maritime National Wildlife Refuge 95 Sterling Highway, Suite 1 Homer, Alaska, USA 99603

> > September 2010

Cite as: D. E. Dragoo, G. S. Drew, and W. R. Bechtol. 2010. Seabird, fish, marine mammal and oceanography coordinated investigations (SMMOCI) in the central Aleutian Islands, Alaska, July 2009. U. S. Fish and Wildl. Serv. Report AMNWR 2010/12. Homer, Alaska.

Executive Summary

We conducted surveys of seabirds, fish, marine mammals and oceanographic conditions in the central Aleutian Islands, Alaska from the $M/V Ti\hat{g}la\hat{x}$ during 16-21 July 2009 as part of the Seabird, Fish, Marine Mammal and Oceanography Coordinated Investigations (SMMOCI) project. The primary objective was to characterize the marine environment in the vicinity of Kasatochi, Koniuji and Ulak islands, which together form one of nine seabird colonies monitored annually by the Alaska Maritime National Wildlife Refuge. We also assessed the short-term impacts of the August 2008 eruption of Kasatochi Volcano on the nearshore environment around the island. The study area in 2009 was similar to that in 1996 and 2003, except that we added transects that extended through Atka, Fenimore and Tagalak passes in 2003 and 2009.

In addition to surveying seabirds and marine mammals on transects, we characterized local oceanography by measuring water temperature and salinity continuously at the sea surface and by taking profiles of the water column.

We measured the relative abundance of zooplankton and fish biomass using a dualfrequency echosounder and sampled with a mid-water trawl net to help determine which species were associated with observed acoustic sign. We set longlines to catch large demersal fish species, used bottom trawls to describe the bottom fauna and sampled plankton at several sites.

In 2009 we counted a total of 19,400 birds on 26 transects covering 425 linear km of surveys, resulting in an average density of approximately 124 birds/km² over an area of 157 km²; similar to the density found during the 1996 and 2003 surveys.

The northern fulmar was the most numerous bird species seen during our survey, followed by crested, least and whiskered auklets, and tufted puffins. The greater numbers of whiskered and least auklets counted in 2003 and 2009 compared to 1996 were likely the result of our surveying through the passes (an area not covered in 1996) and the high concentrations of these two species in and near the passes.

As was the case in 1996 and 2003, we found that the highest acoustic biomass occurred in the deeper waters north of Kasatochi Island as well as in the passes. We captured no fish during longline operations near Kasatochi Island in 2009, likely due to the deposition of volcanic material from the 2008 eruption onto the seabed around the island, thereby reducing or eliminating suitable habitat for large demersal fishes or their prey near Kasatochi Island.

The CTD profiles along transects 9, 12 and 26 in 2009 were similar to those from 2003, and profiles from all years indicated a generally more stratified water column in the north and more mixed waters to the south. The patterns of sea surface temperature and salinity also were similar in all three sample years; warmer, less saline conditions to the north and colder, more saline waters near the passes to the south, indicating upwelling of north Pacific water through the passes.

Executive Summary	i
Table of Contents	ii
List of Tables	iii
List of Figures	iv
Introduction Personnel	1
Methods	1
Bird and Marine Mammal Observations Hydroacoustic Surveys	1
Fishing Oceanographic Data	2
Results	3
Bird and Marine Mammal Observations Prey	3
Oceanography	5
Discussion	5
Acknowledgements	6
Literature Cited	6

Table of Contents

List of Tables

<u>No.</u>	<u>Title</u>	age
1.	Locations, dates and times of surveys in the central Aleutian Islands, Alaska in 2009	8
2.	Species composition and numbers of seabirds and marine mammals observed on 26 transects in the central Aleutian Islands, Alaska in 2009	9
3.	Locations, times and depths of fishing efforts in the central Aleutian Islands, Alaska in 2009	. 11
4.	Species composition and numbers of specimens captured with mid-water trawls during SMMOCI sampling in the central Aleutian Islands, Alaska in 2009	12
5.	Total lengths of fish species captured with mid-water and bottom trawls during SMMOCI sampling in the central Aleutian Islands, Alaska in 2009	13
6.	Species composition and numbers of specimens captured with bottom trawls during SMMOCI sampling in the central Aleutian Islands, Alaska in 2009	14
7.	Species composition and numbers of fishes captured with longline gear during SMMOCI sampling in the central Aleutian Islands, Alaska in 2009	21
8.	Lengths and weights of species captured with longline gear during SMMOCI sampling in the central Aleutian Islands, Alaska in 2009	21
9.	Prey composition of stomach samples taken from Pacific cod caught during longline sets in the central Aleutian Islands, Alaska in 2009	22
10.	Prey composition of stomach samples taken from Pacific halibut caught during longline sets in the central Aleutian Islands, Alaska in 2009	22
11.	Prey composition of stomach samples taken from yellow Irish lord caught during longline sets in the central Aleutian Islands, Alaska in 2009	22
12.	Counts of individuals captured with plankton tows during SMMOCI sampling in the central Aleutian Islands, Alaska in 2009	23
13.	Locations, times and dates of CTD casts made in the central Aleutian Islands, Alaska in 2009	24
14.	Estimates of at sea densities of seabirds near colonies at several Alaskan sites	26

List of Figures

<u>No.</u>	Title	Page
1.	Map of Alaska showing the location of the central Aleutian Islands study area	27
2.	Map of the central Aleutian Islands study area	
3.	Map of transects surveyed near Ulak, Kasatochi and Koniuji islands, Alaska in 2009	
4.	Distribution of albatrosses on transects surveyed in the central Aleutian Islands, Alaska in 2009	
5.	Distribution of mottled petrels and northern fulmars on transects surveyed in the central Aleutian Islands, Alaska in 2009	29
6.	Distribution of shearwaters on transects surveyed in the central Aleutian Islands, Alaska in 2009	29
7.	Distribution of storm-petrels on transects surveyed in the central Aleutian Islands, Alaska in 2009	
8.	Distribution of cormorants on transects surveyed in the central Aleutian Islands, Alaska in 2009	
9.	Distribution of phalaropes on transects surveyed in the central Aleutian Islands, Alaska in 2009	31
10.	Distribution of glaucous-winged gulls and black-legged kittiwakes on transects surveyed in the central Aleutian Islands, Alaska in 2009	31
11.	Distribution of murres on transects surveyed in the central Aleutian Islands, Alaska in 2009	
12.	Distribution of pigeon guillemots and ancient murrelets on transects surveyed in the central Aleutian Islands, Alaska in 2009	
13.	Distribution of Cassin's and parakeet auklets on transects surveyed in the central Aleutian Islands, Alaska in 2009	
14.	Distribution of least and whiskered auklets on transects surveyed in the central Aleutian Islands, Alaska in 2009	
15.	Distribution of crested and unidentified auklets on transects surveyed in the central Aleutian Islands, Alaska in 2009	
16.	Distribution of puffins on transects surveyed in the central Aleutian Islands, Alaska in 2009	34
17.	Distribution of Dall's porpoise on transects surveyed in the central Aleutian Islands, Alaska in 2009	

List of Figures (continued)

<u>No.</u>	Title	Page
18.	Distribution of prey in the water column (10-50 m) based on acoustic surveys in the central Aleutian Islands, Alaska in 2009	
19.	Distribution of prey in the water column (10-100 m) based on acoustic surveys in the central Aleutian Islands, Alaska in 2009	
20.	Distribution of prey in the water column (10-250 m) based on acoustic surveys in the central Aleutian Islands, Alaska in 2009	
21.	Locations of fishing efforts in the central Aleutian Islands, Alaska in 2009	
22.	Size distribution of fishes caught with bottom trawl in the central Aleutian Islands, Alaska in 2009	
23.	Size distribution of fishes caught with longlines in the central Aleutian Islands, Alaska in 2009	
24.	Locations of CTD stations sampled in the central Aleutian Islands, Alaska in 2009	
25.	CTD temperature and salinity profiles obtained from central Aleutian Islands, Alaska transects 9, 12 and 26 in 2009	
26.	CTD temperature and salinity profiles obtained from central Aleutian Islands, Alaska north and south lines in 2009	
27.	Sea surface temperature and salinity interpolated from thermosalinograph records on transects surveyed in the central Aleutian Islands, Alaska in 2009	41

Introduction

We conducted surveys of seabirds, fish, marine mammals and oceanographic conditions in the central Aleutian Islands, Alaska (Figures 1 and 2) from the *M/V Tiĝla* during 16-21 July 2009 as part of the Seabird, Fish, Marine Mammal and Oceanography Coordinated Investigations (SMMOCI) project. The objective was to characterize the marine environment in the vicinity of Kasatochi, Koniuji and Ulak islands, which together form one of nine seabird colonies monitored annually by the Alaska Maritime National Wildlife Refuge (Dragoo et al. 2010). Kasatochi Island erupted on 7 August 2008 and buried the island under several meters of ash. In addition to surveying seabirds and marine mammals on transects, we characterized local oceanography by measuring water temperature and salinity continuously at the sea surface and by taking profiles of the water column at numerous stations on a series of CTD (conductivity, temperature and depth) transects. The relative biomass of zooplankton and fish was measured with a dual-frequency echosounder, and a mid-water trawl was used to identify species associated with the acoustic signal. We set longlines to catch large demersal fish species, used bottom trawls to describe the bottom fauna and sampled plankton at several sites. This report summarizes the data collected from the 2009 SMMOCI cruise to the central Aleutian Islands.

Personnel:Bird Crew: Lisa Climo (Vol., Homer), Catherine Berg (FWS, Anchorage), Gary
Drew (USGS, Anchorage), Naomi Bargmann (USGS, Anchorage), Jeff Williams
(FWS, Homer), David Wigglesworth (FWS, Anchorage), Nathan Zabel (FWS,
Homer)
Fish Crew: Bill Bechtol (Vol., Homer), Aaron Baldwin (Vol., Juneau), Joe
Filipowicz (Vol., Delaware)
Hydroacoustics/Electronics/Birds: Don Dragoo (FWS, Homer)
Tiĝla\$ Crew: Dan Erickson, John Faris, Dan McNulty, Joe Masui, Andy Velsko,
Reuben Guetschow

Methods

Bird and Marine Mammal Observations

We counted birds and marine mammals using strip transect methods described by Gould and Forsell (1989), and employed on previous SMMOCI cruises. Two observers, stationed on the flying bridge of the $M/V Ti\hat{g}la\hat{x}$ (one on each side of the ship), continuously recorded all birds observed on the water within 150 meters on either side of, and 300 meters in front of, the vessel, while the vessel traveled at 9-10 knots. Flying birds were counted on 180° "scans" 150 m forward of and 150 m to each side of the vessel's bow every 30 seconds. We radioed observations to data recorders who logged data into computers using dLog2 (R. G. Ford Consulting, Portland, OR), which assigned all records GPS positions in real time.

We conducted surveys on 26 transects, which included circumnavigations of Kasatochi, Koniuji and Ulak islands at approximately 1.9 km (1 nm) offshore, and surveys through Atka, Fenimore and Tagalak passes (Table 1, Figure 3). Data were used to map bird and marine mammal distributions and estimate corresponding densities.

Hydroacoustic Surveys

Acoustic data from a dual frequency (38 and 120 kHz) Simrad EK500 echosounder were used to assess potential pelagic prey abundance along the same transects and concurrently with marine bird and mammal observations (Figure 3). The threshold for data collection was set at -80 dB. We echo-integrated acoustic data to a maximum depth of 250 m, excluding the surface bubble layer (top 10 m), bad data regions and the bottom. Data were exported into 1 minute by 50, 100 and 250 m depth bins. Only data from the 120 kHz transducer were integrated and summarized for this report because this frequency tends to highlight the size range of typical seabird prey species; 38 kHz data were archived but are not reported here.

Fishing

In general, approximately one-third of the preliminary target areas, primarily in the eastern portion of the study area, were not sampled during the SMMOCI fishing effort in 2009 due to stormy weather. Several of the specimens captured during this study represent range extensions that will be subsequently reported in the formal literature.

Trawls and Tows.— We conducted several types of trawls to relate midwater and shallow nearshore community composition with the hydroacoustic record of biomass. Midwater tows used a 6-m modified herring trawl (with a PVC collecting bucket containing 1-mm mesh), towed for about 10 to 20 minutes at 2–3 kts over ground. A depth sounder attached to the headrope of the midwater trawl provided real-time feedback on fishing depth. A temperature-depth recorder (TDR) attached to the headrope provided water temperature at the fished depth. Midwater trawl collections were identified to the lowest practical taxonomic level, invertebrates and fishes counted, and total length of fishes (nearest mm) measured.

Bottom trawling involved a 3.05-m plumb staff beam trawl, with a cod end of 4-mm stretched mesh, towed for five to 10 minutes at approximately 1.5 kts in the direction of the water current. A TDR attached to the trawl headrope recorded temperature and depth. Catch was identified to the lowest practical taxonomic level, enumerated, and fishes measured for total length (nearest mm).

Longline Sets.— For each longline set, we deployed a single skate with a target of about 100 hooks (size 15/0), baited with salted herring and soaked for about two hours. Catch was identified to species, sampled for total length (nearest mm), sex and weight (nearest 0.1 kg), and stomachs removed and frozen for diet analysis.

Plankton Hauls—While the vessel was drifting following some trawl tows, we sampled plankton in the water column by vertical hauls of a 0.5-m plankton net (0.5 m mouth and 505 μ m mesh) from the shallower of either near-bottom or 100 m. Catch was preserved in 10% formalin until subsequent identification. The hauls probably underestimated the relative abundance of some zooplankton species, particularly larger animals (e.g., shrimps and krill) that swim strongly enough to avoid the net (B. Holladay, University of Alaska Fairbanks, pers. comm.).

Oceanographic Data

Water Column Temperature and Salinity Profile.—We deployed a portable CTD (Sea-Bird Seacat SBE-19 Profiler) at the start and end of all transects, approximately every 3.7 km (2 nm) along transect lines 09, 12 and 26 (Figure 3), and at the end of each fishing event (trawl, tow or longline set) to obtain temperature and salinity profiles from the surface to the shallower of either near-bottom or approximately 100 m. We analyzed data using VG gridding with Ocean Data View[®] (Schlitzer 2004).

Sea Surface Temperature and Salinity.—Sea surface temperature and salinity were continuously recorded while underway using a Sea-Bird Seacat SBE21 thermosalinograph. We used VG gridding in Ocean Data View[®] (Schlitzer 2004) to generate temperature and salinity contour maps as a way of illustrating the occurrence of surface structures such as fronts.

Results

Bird and Marine Mammal Observations

In 2009 we counted a total of 19,400 birds on 26 transects covering 425 linear km of surveys (Table 2), resulting in an average density of approximately 124 birds/km² over an area of 157 km^2 .

Procellariids.—Almost all of the Laysan and black-footed albatrosses were encountered over the relatively deep water north of the 50 fathom (91.4 m) depth contour (Figure 4). Most mottled petrels occurred between Kasatochi and Koniuji islands (Figure 5). Northern fulmars were widely distributed throughout the survey area, with highest concentrations near Fenimore Pass and Ulak Island (Figure 5). All but one of the shearwaters identified to species were short-tailed shearwaters (Table 2). Shearwaters were widely distributed, but most occurred over relatively deep waters (Figure 6). The majority of storm-petrels were observed over water deeper than 50 fathoms (91.4 m), primarily between Kasatochi and Koniuji islands (Figure 7).

Cormorants.—Cormorants were seen inshore and in the passes (Figure 8).

Shorebirds.—We saw one least sandpiper (Table 2). Phalaropes (almost entirely red phalaropes) were widely distributed, especially in the passes and the eastern part of the survey area (Figure 9).

Gulls and Kittiwakes.—Glaucous-winged gulls and black-legged kittiwakes were seen over both deep and relatively shallow waters throughout the survey area (Figure 10).

Murres and Guillemots.—We found murres to be patchily distributed, with concentrations near Koniuji and Ulak islands as well as in the passes (Figure 11). Most of the murres identified to species were thick-billed murres (Table 2). We observed pigeon guillemots almost entirely in the passes (Figure 12).

Murrelets and Auklets.—Most ancient murrelets occurred in the western portion of the study area, especially north of Ulak Island (Figure 12). Crested auklets were the most numerous auklets observed (Table 2) and, along with least auklets, were found throughout the study area, with concentrations near Kasatochi and Koniuji islands and in the passes. We found the highest concentrations of Cassin's and whiskered auklets in or near the passes, with other auklet species more widely distributed (Figures. 13-15).

Puffins.— Tufted puffins, which substantially outnumbered horned puffins (Table 2), occurred over most of the study area with higher concentrations associated with islands and passes (Figure 16). Horned puffins had a patchy distribution throughout the survey area (Figure 16).

Marine Mammals.—We saw many groups of Dall's porpoise on transects, almost all over relatively deep water (Table 2, Figure 17).

Prey

Acoustic Surveys.—In general, acoustic biomass was greatest near the islands, in passes and in deeper waters in the northern portion of our study area (Figures 18-20).

Mid-water Trawls.— We conducted three mid-water trawls in 2009 (Table 3, Figure 21). Krill (euphausiids) was the most numerous invertebrate, followed by jellyfish (Table 4). The most numerically abundant fishes captured were juveniles, typically larval stages (Tables 4 and 5).

Bottom Trawls.— The ten bottom trawls conducted in 2009 (including one repeat tow: BT09b) yielded a wide variety of invertebrate and fish species (Table 3, Figure 21). Yellowlegged Pandalid shrimp was the most abundant species (n=1,723), with large catches in tows BT02 and BT09b (Table 6). Other invertebrates for which one hundred or more individuals were caught included Atlantic daisy brittle star, northern crangon, circumpolar shrimp, slenderbeak coastal shrimp and Aleutian urchin (Table 6). Several of the invertebrates captured were colonial organisms (e.g., hydroids and bryozoans) and are only documented here as being "present" rather than our attempting to quantify abundances.

Among bottom trawl tows, fewer than 10 specimens were caught for 75% of the fish species captured. Northern rock sole, the most abundant fish species caught (n=168), occurred in over half of the tows but was most abundant in tow BT03 (Table 6). Length data were collected from 23 fish species, although many of these species were represented by only a single specimen (Table 5). For most species caught, including the three most abundant species, northern rock sole, fourhorn poacher and northern sculpin, specimen size was generally 100 mm or less in total length (Figure 22).

Longline Sets.— Two longline sets were made in 2009 (Table 3, Figure 21). The first set, involving 79 hooks fished near Ulak Island, caught 7 Pacific cod, 12 Pacific halibut, and 18 Yellow Irish lord (Table 7). The second longline set, 100 hooks placed near Kasatochi Island, generated no catch. Specimens caught on longlines ranged from 353 mm to 1,004 mm in total

length, with relative sizes generally being Pacific halibut > Pacific cod > yellow Irish lord (Table 8, Figure 23). The majority of the specimens were male fish.

Shrimp comprised the bulk (percent frequency of occurrence and count) of the diet of Pacific cod caught on longlines (Table 9). Atka mackerel and other fishes constituted the majority of cod diet by weight. Fish remains comprised the majority of the diet of the Pacific halibut captured on longlines (Table 10). Yellow Irish lord exhibited a varied diet dominated by brittle stars (Table 11).

Plankton Tows.—We conducted three vertical plankton tows in 2009 (Table 3, Figure 21). Copepods, mostly *Eucalanus bungii* and *Neocalanus plumchrus*, were the most abundant catch among tows (Table 12).

Oceanography

Water Column Profile.—Profiles from a total of 47 casts (Table 13, Figure 24) generally indicated a stratified water column in the north with mixed water nearer the passes. Intrusions of cooler, more saline water from below occurred in places and probably were associated with local bathymetry and currents (Figures 25 and 26).

Sea Surface Temperature and Salinity.— Surface waters over the deeper, offshore areas to the north tended to be relatively warm and less saline whereas cooler, more saline conditions predominated in the shallower portions and passes of the southern part of the study area (Figure 27).

Discussion

The study area for our 2009 central Aleutian Island SMMOCI cruise was similar to that in 1996 and 2003 (Drew et al. 2003, Dragoo 2007), including the transects that were added in 2003 extending through Atka, Fenimore and Tagalak passes. Overall seabird density in the central Aleutian Islands in 2009 was similar to that found in 1996 and 2003 (Table 14).

The northern fulmar was the most numerous bird species seen during our survey, followed by crested, least and whiskered auklets, and tufted puffins. The greater numbers of whiskered and least auklets counted in 2003 and 2009 compared to 1996 were likely the result of our surveying through the passes (an area not covered in 1996) and the high concentrations of these two species in and near the passes.

As was the case in 1996 and 2003 (Drew et al. 2003, Dragoo 2007), we found that the highest acoustic biomass occurred in the deeper waters north of Kasatochi Island as well as in the passes. We captured no fish during longline operations near Kasatochi Island in 2009, likely due to the deposition of volcanic material from the 2008 eruption onto the seabed around the island, thereby reducing or eliminating suitable habitat for large demersal fishes or their prey near Kasatochi Island.

The CTD profiles along transects 9, 12 and 26 in 2009 were similar to those from 2003, and profiles from all years indicated a generally more stratified water column in the north and more mixed waters to the south (Drew et al. 2003, Dragoo 2007). The patterns of sea surface temperature and salinity also were similar in all three sample years; warmer, less saline

conditions to the north and colder, more saline waters near the passes to the south, indicating upwelling of north Pacific water through the passes.

Acknowledgements

We would like to thank all of the people who helped gather data during the 2009 central Aleutian Island SMMOCI survey. Their perseverance, professionalism and good cheer were much appreciated. Aaron Baldwin identified the plankton samples and Catherine W. (Kitty) Mecklenburg consulted on several fish identifications. Rick Hibpshman, Andy Whitehouse, Geoff Lang, and Mei-Sun Yang (NOAA, NMFS) analyzed fish stomach samples. The cover photo is by Jerry Morris; provided by the Alaska volcano Observatory. Vernon Byrd reviewed a draft of this report. We appreciate his thoughtful comments. We would also like to thank the staff of Alaska Maritime National Wildlife Refuge for their help and support. Finally, we would like to express our sincere thanks to the captain and crew of $M/V Tiĝla\hat{x}$ without whose enthusiasm, professionalism and patience this work would not have been possible.

Literature Cited

- Byrd, G. V., R. L. Merrick, J. F. Piatt, and B. L. Norcross. 1997. Seabird, marine mammal and oceanography coordinated investigations (SMMOCI) near Unimak Pass, Alaska. Pp. 351-364 *in*: Forage Fishes in Marine Ecosystems. Proceedings of the International Symposium on the Role of Forage Fishes in Marine Ecosystems. Alaska Sea Grant College Program Report No. 97-01. University of Alaska Fairbanks.
- Dragoo, D. E. 2006*a*. Seabird, fish, marine mammal and oceanography coordinated investigations (SMMOCI) in the Semidi Islands, Alaska, July 2001 and 2004. U. S. Fish and Wildlife Service Report AMNWR 06/01.
- . 2006*b*. Seabird, fish, marine mammal and oceanography coordinated investigations (SMMOCI) near Bluff, Norton Sound, Alaska, July 2002. U. S. Fish and Wildl. Serv. Report AMNWR 06/03.
- _____. 2007. Seabird, fish, marine mammal and oceanography coordinated investigations (SMMOCI) in the central Aleutian Islands, Alaska, July-August 2003. U. S. Fish and Wildlife Service Report AMNWR 07/01.
- _____.2009. Seabird, marine mammal, and oceanography coordinated investigations (SMMOCI) in the Pribilof Islands, Alaska, in July 2005. U. S. Fish and Wildlife Service Report AMNWR 09/01.
- _____, and G. V. Byrd. 1998. Seabird, marine mammal, and oceanography coordinated investigations in the Pribilof Islands, Alaska, in July 1997 (SMMOCI 97-3). U. S. Fish and Wildlife Service Report AMNWR 98/06.

- _____. 1999. Seabird, marine mammal, and oceanography coordinated investigations at Buldir Island, Aleutian Islands, Alaska, July 1998 (SMMOCI-98-3). U. S. Fish and Wildlife Service Report AMNWR 99/05.
- _____, and D. B. Irons. 2010. Breeding status, population trends and diets of seabirds in Alaska, 2007. U. S. Fish and Wildlife Service Report AMNWR 2010/08.
- Drew, G. S., J. F. Piatt, G. V. Byrd, and D. E. Dragoo. 2003. Seabird, fisheries, marine mammal, and oceanography coordinated investigations around Kasatochi, Koniuji and Ulak islands, August 1996 (SMMOCI 96-3). U. S. Fish and Wildlife Service Report AMNWR 03/06.
- Gould, P. J., and D. J. Forsell. 1989. Techniques for shipboard surveys of marine birds. U. S. Fish and Wildlife Service Technical Report 25, Washington, D. C.
- Piatt, J. F. 1994. Oceanic, shelf and coastal seabird assemblages at the mouth of a tidally-mixed estuary (Cook Inlet, Alaska). Final Rep. to Minerals Management Service, OCS Study MMS 93-0072.
- . (ed.). 2003. Response of seabirds to fluctuations in forage fish density. Final Report to *Exxon Valdez* Oil Spill Trustee Council (Restoration Project 00163M) and Minerals Management Service (Alaska OCS Report 2002-068). Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska.
- _____, and D. E. Dragoo. 2005. Seabird, fisheries, marine mammal, and oceanography coordinated investigations (SMMOCI) in Sitka Sound, Alaska, July 2000. U. S. Fish and Wildl. Serv. Report AMNWR 04/01.
- _____, J. L. Wells, A. MacCharles, and B. Fadely. 1990. The distribution of seabirds and their prey in relation to ocean currents in the southeastern Chukchi Sea. Canadian Wildlife Service Occasional Papers 68:21-31.
- Robards, M., G. Drew, J. Piatt, J. M. Anson, A. Abookire, J. Bodkin, P. Hooge, and S. Speckman. 2003. Ecology of selected marine communities in Glacier Bay: Zooplankton, forage fish, seabirds and marine mammals. Final Rep. for Glacier Bay National Park (Gustavus, AK). Alaska Science Center, USGS, Anchorage, Alaska.

Schlitzer, R. 2006. Ocean Data View, http://www.awi-bremerhaven.de/GEO/ODV.

	Start	Start	Stop	Stop			
	Latitude	Longitude	Latitude	Longitude	_	Start	Stop
Transect	(°N)	(°W)	(°N)	(°W)	Date	Time ^a	Time ^a
1	52.0412°	175.9412°	52.1712°	176.0010°	7/16	16:14	17:08
2	52.1718°	176.0013°	52.1712°	175.8342°	7/16	17:23	18:02
3	52.1755°	175.8288°	52.0127°	175.8367°	7/18	10:05	11:09
4	52.0142°	175.8365°	51.9852°	175.7525°	7/18	11:22	11:45
5	51.9878°	175.6695°	51.9865°	175.7460°	7/19	13:40	13:59
6	52.1967°	175.6546°	51.9862°	175.6631°	7/18	14:12	15:35
7	52.1935°	175.6605°	52.2267°	175.5002°	7/18	18:23	19:03
8	52.2282°	175.4997°	52.1972°	175.5057°	7/18	19:16	19:30
9	52.1497°	175.5058°	52.0088°	175.5022°	7/19	09:11	10:40
10	52.0098°	175.5068°	51.9957°	175.3817°	7/19	10:52	11:23
11 ^b	52.0437°	175.3395°	52.0267°	175.3628°	7/20	16:13	16:28
12	52.2488°	175.3395°	52.0458°	175.3375°	7/20	13:30	16:01
13	52.2585°	175.2045°	52.2498°	175.3307°	7/20	12:43	13:15
14	52.0788°	175.1665°	52.2815°	175.1667°	7/20	11:00	12:18
15	52.1187°	174.9980°	52.0808°	175.1562°	7/20	10:08	10:48
16	52.3168°	174.9922°	52.1208°	175.0003°	7/20	08:41	09:56
17	52.0203°	175.9123°	52.0208°	175.9122°	7/16	13:25	14:20
18	51.9890°	175.7517°	52.1797°	175.7512°	7/18	11:57	13:27
19 ^c	51.9755°	175.5815°	52.1992°	175.5817°	7/18	16:14	17:41
19 ^d	51.9867°	175.7453°	51.9762°	175.5840°	7/19	14:04	15:50
20	52.1447°	175.5025°	52.1445°	175.5058°	7/19	07:48	0858
21	52.0018°	175.4182°	52.2498°	175.4163°	7/19	16:43	18:08
22	52.2628°	175.2495°	52.0728°	175.2503°	7/21	12:42	14:03
23	52.2135°	175.1005°	52.2138°	175.1010°	7/21	10:32	11:30
24	52.1742°	175.8277°	52.1847°	175.7508°	7/16	18:21	18:40
25	52.0037°	175.3720°	51.9865°	175.6645°	7/19	12:14	13:33
26	52.0590°	175.9077°	52.1723°	175.9162°	7/18	08:13	09:26

Table 1. Locations, dates and times of surveys used for bird and marine mammal observations, and hydroacoustics surveys in the central Aleutian Islands, Alaska in 2009.

^aAll times are Aleutian Daylight (Universal Coordinated Time minus 9 hours). ^bTransect not finished due to rough seas.

^cStraight line portion of transect 19. ^dPortion of transect 19 that traversed Fenimore and Tagalak passes.

Species	Scientific Name	No. Observed	Density ^a	% Total
All Bird Species Total		19,400	123.57	100.00
Common eider	Somateria mollissima	2	0.01	0.01
Laysan albatross	Phoebastria immutabilis	49	0.31	0.25
Black-footed albatross	Phoebastria nigripes	8	0.05	0.04
Northern fulmar	Fulmarus glacialis	5073	32.31	26.15
Mottled petrel	Pterodroma inexpectata	5	0.03	0.03
Sooty shearwater	Puffinus griseus	1	0.01	0.01
Short-tailed shearwater	Puffinus tenuirostris	354	2.25	1.82
Unidentified shearwater	Puffinus sp.	352	2.24	1.81
Fork-tailed storm-petrel	Oceanodroma furcata	91	0.58	0.47
Leach's storm-petrel	Oceanodroma leucorhoa	8	0.05	0.04
Unidentified storm-petrel	Oceanodroma sp.	4	0.03	0.02
Red-faced cormorant	Phalacrocorax urile	25	0.16	0.13
Pelagic cormorant	Phalacrocorax pelagicus	1	0.01	0.01
Unidentified cormorant	Phalacrocorax sp.	8	0.05	0.04
Least sandpiper	Calidris minutilla	1	0.01	0.01
Red-necked phalarope	Phalaropus lobatus	27	0.17	0.14
Red phalarope	Phalaropus lobatus	1095	6.97	5.64
Unidentified phalarope	Phalaropus sp.	4	0.03	0.02
Glaucous-winged gull	Larus glaucescens	353	2.25	1.82
Black-legged kittiwake	Rissa tridactyla	63	0.40	0.32
Pomarine jaeger	Stercorarius pomarinus	1	0.01	0.01
Long-tailed jaeger	Stercorarius longicaudus	1	0.01	0.01
Common murre	Uria aalge	30	0.19	0.15
Thick-billed murre	Uria lomvia	226	1.44	1.16
Unidentified murre	<i>Uria</i> sp.	172	1.10	0.89
Pigeon guillemot	Cepphus columba	26	0.17	0.13
Ancient murrelet	Synthliboramphus antiquus	115	0.73	0.59
Cassin's auklet	Ptychoramphus aleuticus	212	1.35	1.09
Parakeet auklet	Aethia psittacula	350	2.23	1.80
Least auklet	Aethia pusilla	1916	12.20	9.88
Whiskered auklet	Aethia pygmaea	2322	14.79	11.97
Crested auklet	Aethia cristatella	3509	22.35	18.09
Unidentified auklet	Aethia sp.	921	5.87	4.75
Unid. small dark alcid	<i>Alcidae</i> sp.	24	0.15	0.12

Table 2. Species composition and numbers of seabirds and marine mammals observed on 26 transects in the central Aleutian Islands, Alaska in 2009.

Table 2. Species composition and numbers of seabirds and marine mammals observed on 26transects in the central Aleutian Islands, Alaska in 2009 (continued).

Species	Scientific Name	No. Observed	Density ^a	% Total
Horned puffin	Fratercula corniculata	82	0.52	0.42
Tufted puffin	Fratercula cirrhata	1894	12.06	9.76
Dall's porpoise	Phocoenoides dalli	75	0.48	0.39

^aIndividuals/km². A total of approximately 157 km² was surveyed.

		Time	Duration	Start	Start	End	End	Bottom	Gear	Water
Set ^a	Date	set ^b	(minutes) ^c	Latitude (N)	Longitude (W)	Latitude (N)	Longitude (W)	Depth (m)	Depth (m)	Temperature (°C)
BT01	7/16	11:17	14	52.0667°	175.8833°	ND^d	ND	78-100	78-100	4.6-5.4
LL01	7/16	12:45	135	52.0333°	175.9167°	52.0167°	175.9467°	25-65	25-61	ND
BT02	7/16	20:35	10	52.0500°	175.9333°	ND	ND	77-84	77-84	5.0-5.4
BT03	7/17	15:50	10	52.0483°	175.9733°	52.0483°	175.9800°		32-38	5.5-6.4
BT04	7/18	20:08	10	52.1505°	175.4933°	52.1483°	175.4950°		20-26	5.2-5.9
BT05	7/18	21:02	10	52.1378°	175.4817°	52.1408°	175.4850°		45-64	4.7-5.0
VT01	7/18	21:19		52.1408°	175.4850°			26	20	ND
BT06	7/18	22:28	11	52.1355°	175.5010°	52.1310°	175.4997°		46-49	4.7-4.9
VT02	7/18	22:45		52.1328°	175.4953°			50	40	ND
BT07	7/19	01:14	10	52.1522°	175.5492°	52.1482°	175.5468°	79-89	51-91	5.0-5.2
MW01	7/19	04:20	20	52.1650°	175.8528°	52.1635°	175.8728°	570	5-34	6.0-7.6
LL02	7/19	19:30		52.1567°	175.5408°	52.1625°	175.5403°	29-33	29-33	ND
MW02	7/19	20:00	10	52.2038°	175.4732°	52.1920°	175.4550°	25-75	6-65	5.2-6.8
MW03	7/20	00:13	11	52.1610°	175.3757°	52.1580°	175.3632°	217-245	4-30	5.1-7.6
VT03	7/20	00:46		52.1612°	175.3667°			263	100	ND
BT08	7/20	02:08	10	52.1963°	175.1553°	52.1943°	175.1667°		101-151	3.6-4.3
BT09	7/20	03:18	10	52.1985°	175.1237°	52.1992°	175.1297°	127-126	94-109	4.1-4.5
BT09b	7/20	04:20	11	52.1960°	175.1167°	52.1962°	175.1053°	130-141	130-139	3.8-4.1

Table 3. Location, time and depth for fishing efforts in the central Aleutian Islands, Alaska in 2009.

^aMW = Midwater trawl, BT = Bottom trawl, LL = Longline set, VT = Vertical plankton tow ^bAll times are Aleutian Daylight (Universal Coordinated Time minus 9 hours). ^c Time at target depth. ^dND = no data.

		То	w number		Species
Common name	Scientific name	MT01	MT02	MT03	Total
	Invertebrates				
Jellies					
Bubble Jelly	Aequorea victoriae	3	8		11
Jellyfish unid.	Medusa unid.	2	3	27	32
Larvacean	Oikopleura sp.		1		1
Eggyolk jelly	Phacellophora camtschatica		1	2	3
Thimble jellyfish	<i>Sarsia</i> sp.	24	89	16	129
Moon Jelly	Aurelia labiata	1		2	3
Lion's mane jelly	Cyanea capillata			3	3
Other invertebrates					
Arrow Worm	Eukrohnia hamata		1		1
Hyperiid Amphipod	Hyperia medusarum	1	2		3
Gammarid Amphipod	Pardaliscidae unid.		1		1
Athecata hydroid unid.	Anthomedusae unid.	36	3		39
Squid Unid	Teuthidae unid.	9	2		11
Neocalanus copepod	Neocalanus plumchrus		320	27	347
Eucalanus copepod	Eucalanus bungii		68		68
Krill	Thysanoessa longipes	14,121	31	5	14,157
Crab megalops	Cheiragonidae unid.		1		1
	Vertebrates				
Pacific cod	Gadus macrocephalus			1	1
Cod larvae unid.	Gadidae unid.		1		1
Atka mackerel	Pleurogrammus monopterygius			1	1
Poacher juvenile unid.	Agionidae unid.	1			1
Fish larvae unid.	Teleost unid.	4			4
	Other items caught				
Brown algae unid.	Laminariales unid.			P ^a	Р
	Trawl Total	14,202	532	84	14,818

 $^{a}P = present but not enumerated.$

		Standard		Sample
	Mean	Deviation	Range	size
A. Midwater Trawl				
Pacific cod	1,080.0	NA^{a}	NA	1
Gadidae juvenile	17.3	1.5	16-19	3
Atka mackerel	232.0	NA	NA	1
B Bottom Trawl				
Alaska skate	270.0	NΔ	NA	1
Darkblotched rockfish	270.0 85.6	21 /	74-138	8
Sebastes unid juvenile	69.6	11.4	53-84	14
Keln greenling	82.5	0.7	82-83	2
Scalybreasted sculpin	49.9	10.4	34-76	2 19
Scissortail sculpin	119.0	60.8	76-162	2
Spectacled sculpin	33.0	12.7	24-42	2
Ribbed sculpin	105.5	41.9	56-150	6
Butterfly sculpin	85.0	NA	NA	1
Yellow Irish lord	169.3	87.2	118-270	3
Northern sculpin	66.5	11.4	50-102	20
Eyeshade sculpin	83.0	NA	NA	1
Darkfin sculpin	43.5	0.7	43-44	1
Alligator fish	116.0	NA	NA	1
Fourhorn poacher	44.3	8.1	32-64	39
Sturgeon poacher	25.0	NA	NA	1
Pacific spiny lumpsucker	26.0	NA	NA	1
Marbled snailfish	70.0	NA	NA	1
Lobefin snailfish	55.0	2.6	53-58	3
Searcher	123.0	NA	NA	1
Arrowtooth flounder	110.0	NA	NA	1
Northern rock sole	78.4	78.3	18-422	167

Table 5. Total lengths (mm) of fish species captured with (A) mid-water trawls and (B) bottom trawls during SMMOCI sampling in the central Aleutian Islands, Alaska in 2009.

^aNot applicable.

Table 6. Species composition and numbers of specimens captured with bottom trawls during SMMOCI sampling in the central Aleutian	ı
Islands, Alaska in 2009.	

		Tow number									(Species
Common name	Scientific name	BT01	BT02	BT03	BT04	BT05	BT06	BT07	BT08	BT09a E	3T09b	Total
		Inv	ertebra	ites								
Sponges and Cnidarians												
Scapula sponge unid.	Demospongia unid.		\mathbf{P}^{a}									Р
Sponge unid.	Halichondria sp.		Р									Р
Orange papillated sponge	Inflatella sp.		2									2
Mycale sponge unid.	<i>Mycale</i> sp.		Р									Р
Orange finger sponge	Neoesperiopsis rigida						Р					Р
Sponge unid.	Plakina sp.		Р									Р
Hairy urn sponge	Scypha ciliata	Р										Р
Hermit sponge	Suberites ficus		2	1			1					4
Sea strawberry	Gersemia rubiformis					1						1
Hydroid unid.	Hydroida unid.	Р					Р	Р	Р	Р	Р	Р
Sea fir	Abietinaria sp.		Р			Р	Р	Р	Р	Р	Р	Р
Annelids	-											
Polychaete unid.	Phyllodocidae unid.	7										7
Scaleworm unid.	Polynoid unid.	3	5									8
Serpulid unid.	<i>Serpula</i> sp.	1										1
Jellyfishes												
Moon jelly	Aurelia labiata				1				1			2
Jellyfish unid.	Medusa unid.	1							1			2
Thimble jellyfish	Sarsia sp.	4			75					2		81
Bivalves	-											
Rock jingle	Pododesmus macroschisma		2									2
Arctic hiatella	Hiatella arctica	1								1		2
British Columbia cranella	Megacranella columbiana	1	7								3	11
Northern horse mussel	Modiolus modiolus		4									4
Pink scallop	Chlamys rubida	1	9									10
Alaska glass scallop	Parvamussium alaskense	5	27									32
Gastropods												
Clark's Buccinum sp. C	Buccinum sp.						1					1
Hall's colus	Colus halli	1										1

		Tow number S								species		
Common name	Scientific name	BT01	BT02	BT03	BT04	BT05	BT06	BT07	BT08	BT09a E	3T09b	Total
Gastropods (cont.)												
Oregon triton	Fusitriton oregonensis		68			1	5					73
Nut whelk	Liomesus ooides			3								3
Margarites snail unid.	Margarites unid.	1										1
Thick-ribbed whelk	Neptunea brevicauda		1									1
Sandpaper trophon	Scabrotrophon sp.	1										1
Velvet snail	Velutina sp.		3									3
Nudibranchs												
Aeolis unid.	Dendronotus sp.		2									2
Aeolis unid.	Flabellina sp.			1								1
Sea clown triopha	Triopha catalinae		3									3
Sea clown triopha	<i>Triplax</i> sp.		3									3
Nudibranch unid.	Tritoniidae unid.		18								1	19
Misc. Molluscs												
Octopus unid.	Octopoda unid.		1									1
Crabs	-											
Pygmy rock crab	Cancer oregonensis						1					1
Red hermit	Elassochirus gilli						2					2
Widehand hermit	Elassochirus tenuimanus					9	48	1				58
Soft crab	Hapaloguster grebnitzkii						3					3
Pacific lyre crab	Hyas lyratus		4									4
Splitnose crab	Oregonia bifurca		1									1
Decorator crab	Oregonia gracilis		96			7	7		1	1	15	127
Sponge hermit	Pagurus brandtii		33				1	1				35
Blue spined hermit	Pagurus kennerleyi		1									1
Alaska hermit	Pagurus ochotensis			33								33
Alaska hermit	Pagurus stevansae						1					1
Fuzzy hermit	Pagurus trigonocheirus		51				5				1	57
Red king crab	Paralithodes camtschatica		1									1

		Tow number								Species		
Common name	Scientific name	BT01	BT02	BT03	BT04	BT05	BT06	BT07	BT08	BT09a l	BT09a BT09b Tot	
Shrimps												
Rough argid	Argis crassa	1	6				61					68
Smooth argid	Argis laevior			3								3
Split-eye argid	Argis ovifer										5	5
Northern crangon	Crangon alaskensis			153		1			23			177
Dall's crangon	Crangon dalli										6	6
Barbed eualid	Eualus barbatus										22	22
Circumpolar shrimp	Eualus gaimardii		121									121
Eualid unid.	<i>Eualus</i> sp. 1								1		2	3
Eualid undesc. ^b	<i>Eualus</i> sp. 2								6		24	30
Townsend eualid	Eualus townsendi		15						5		22	42
Northern coastal shrimp	Heptacarpus camtschaticus		21									21
Slenderbeak coastal shrimp	Heptacarpus flexus		107						3		3	113
Threespine coastal shrimp	Heptacarpus tridens	1										1
Clown shrimp	Lebbeus acudactylus								1		1	2
Northern spinyhead	Mesocrangon intermedia					1			4	1	7	13
Mysid shrimp unid.	<i>Mysid</i> sp.			5								5
Humpy shrimp	Pandalus goniura	1										1
Rough-patch shrimp	Pandalus stenolepis		30									30
Yellow-legged Pandalid	Pandalus tridens	9	1,335						31	1	347	1,723
Saddle-back shrimp	Rhynocrangon alata		21									21
Sharp's saddle-back shrimp	Rhynocrangon sharpi	4	78						1		9	92
Rathbuns's bladed shrimp	Spirontocaris arcuata		31									31
Oval blade shrimp	Spirontocaris ochotensis	6	2						16	1	39	64
Deep blade shrimp	Spirontocaris prionota	1	1									2
Krill												
Euphausiids	Thysanoessa longipes	1							4	3		8
Isopods												
Sea cockroach	Rocinela angustata		1				1					2

Table 6. Species composition and numbers of specimens captured with bottom trawls during SMMOCI sampling in the central Aleutian Islands, Alaska in 2009 (continued).

Table 6. Species composition and numbers of sp	imens captured with bottom trawls during SMMOCI sampling in the central Aleutian
Islands, Alaska in 2009 (continued).	

		Tow number S								Species		
Common name	Scientific name	BT01	BT02	BT03	BT04	BT05	BT06	BT07	BT08	BT09a B	Г09b	Total
Amphipods												
Amphipod unid.	Amphipoda unid.		1									1
Arcturid unid.	Arcturid sp.										1	1
Amphipod unid.	Ischyrociridae unid.				1							1
Gammarid amphipod unid.	Monoculoides sp.				1		5	2				8
Pleustoid amphipod unid.	Pleustoidia unid.	2		Р								2
Sea stars												
Orange cookie star	Ceramaster patagonicus	1	3									4
Common rose star	Crossaster papposus		12									12
Spiny Henricia	Henricia spiculifera		3									3
Fat Henricia	Henricia tumida								1			1
Greenland star	Leptasterias groenlandica		7									7
Black spined star	Lethasterias nanimensis		3									3
Atlantic daisy brittle star	Ophiopholis aculeata		310									310
Japanese daisy brittle star	Ophiopholis japonica	2					26					28
Long-spined Ophiopholis	Ophiopholis longispina		5									5
Basket star	Ophiura quadrispina		7									7
Notched brittle star	Ophiura sarsi	1					1		1		4	7
Prickly cushion star	Pteraster marsippus		3									3
Obscure cushion star	Pteraster obscurus		1									1
Tesselated slime star	Pteraster tesselatus		1									1
Sea star unid.	Solaster sp.		4									4
Other Echinoderms												
Pale sea football	Cucumaria fallax						1					1
Challenger cucumber	Synallectes challengeri		6									6
Pink-orange urchin	Strongylocentrotus fragilis		1									1
Aleutian urchin	Strongylocentrotus polycanthus	2	136			5	17					160
Northern sand dollar	Echincarachnius parma			25								25
Bryozoans	-											
Smooth leather byrozoan	Alcyonidium produnculata		Р									Р
Bryozoan unid.	Alcyonidium sp.	Р	Р									Р

		Tow number Spe								Species		
Common name	Scientific name	BT01	BT02	BT03	BT04	BT05	BT06	BT07	BT08	BT09a H	BT09b	Total
Bryozoans (cont.)												
Fan bryozoan	Dendrobeania sp.	Р	Р						Р	Р	Р	Р
Nodding head unid.	Entoprocta sp.	Р										Р
Nodding head unid.	Eualus cf pusiolus	1										1
Fluted byrozoan unid.	<i>Hippodiplosia</i> sp.	Р										Р
Stick bryozoan	Microporina sp.	Р										Р
Lacy bryozoan	Phidolopora pacifica	1	Р						Р	Р		1
Ribbed bryozoan	Rhamphostomella costata		Р									0
Other invertebrates												
Striped sea leech	Notostomum cyclostomum		1						5			6
Sea spider	Nymphon cf pixellae		28								3	31
Urochordates												
Colonial ascidian	Urochordata unid.		2									2
Sea peach	Halocynthia aurantium		2									2
Sea onion (not baltanic)	Synoicum sp.		14								3	17
Tunicate unid.	Urochordata unid. sp. 1										3	3
Tunicate unid.	Urochordata unid. sp. 2										2	2
Tunicate unid.	Urochordata unid. sp. 3										3	3
Tunicate unid.	Urochordata unid. sp. 4										4	4
Tunicate unid.	Urochordata unid.		2									2

		Tow number								Ś	Species	
Common name	Scientific name	BT01	BT02	BT03	BT04	BT05	BT06	BT07	BT08	BT09a I	BT09b	Total
		Ve	ertebrat	es								
Skates												
Alaska skate	Bathyraja parmifera					1						1
Rockfishes												
Darkblotched rockfish	Sebastes crameri										8	8
Rockfish juv. unid.	Sebastes sp.		14									14
Greenlings	-											
Kelp greenling	Hexagrammos decagrammos				2							2
Sculpins												
Yellow Irish lord	Hemilepidotus jordani		1				3					4
Butterfly sculpin	Hemilepidotus papilio										1	1
Northern sculpin	Icelinus borealis	2	10			1			2		7	22
Darkfin sculpin	Malacocottus zonurus		1						1			2
Eyeshade sculpin	Nautichthys pribilovius		1									1
Ribbed sculpin	Triglops pingelii						6					6
Scissortail sculpin	Triglops forficatus		2								1	3
Spectacled sculpin	Triglops scepticus			2								2
Scalybreasted sculpin	Triglops xenostethus						19					19
Sculpin unid.	Cottoidea unid.						5				1	6
Poachers												
Alligatorfish	Aspidophoroides monopterygius		1									1
Fourhorn poacher	Hypsagonus quadricornis		39									39
Sturgeon poacher	Podothecus accipenserinus			1								1
Lumpsucker and Snailfishes												
Pacific spiny lumpsucker	Eumicrotremus orbis		2								1	3
Marbled snailfish	Liparis dennyi										1	1
Lobefin snailfish	Liparis greeni				3							3
Flatfishes												
Arrowtooth flounder	Atheresthes stomias					1						1
Northern rock sole	Lepidopsetta polyxystra		1	143	1	10	12	1				168

		Tow number Spec								Species		
Common name	Scientific name	BT01	BT02	BT03	BT04	BT05	BT06	BT07	BT08	BT09a E	3T09b	Total
Ronquils												
Searcher	Bathymaster signatus		17				1					18
		Other i	items in	catch								
Three-ribbed kelp	Cymathere triplicata				Р							Р
Brown algae unid	Laminariales unid.				Р							Р
Red algae unid.	Rhodophyta unid.				Р							Р
Rocks	Rocks				Р		Р	Р				Р
Shells	Shells		Р				Р					Р
2-	Trawl Total	63	2,754	370	86	38	233	5	108	10	550	4,217

 $^{a}P = present but not enumerated.$

^bPossibly a previously undescribed species.

Table 7. Species composition and numbers of fishes captured with longline gear duringSMMOCI sampling in the central Aleutian Islands, Alaska in 2009.

		LL01 (79) ^a	LL02 (100) ^a
Common name	Scientific name	Ulak I.	Kasatochi I.
Pacific cod	Gadus macrocephalus	7	0
Yellow Irish lord	Hemilepidotus jordani	18	0
Pacific halibut	Hippoglossus stenolepis	12	0
	Total	37	0

^aNumber of hooks set in parentheses.

Table 8. Lengths and weights of species captured with longline gear during SMMOCI sampling in the central Aleutian Islands, Alaska in 2009.

		Т	'otal ler	ngth (mm)		Weight (kg)					
Common name	Sex	Mean	SD^{a}	Range	n ^a	Mean	SD	Range	n		
Pacific cod	Male	666.1	45.1	612-737	7	3.0	0.8	2.1-4.5	7		
	Female	NA^b	NA	NA	0	NA	NA	NA	0		
	All	666.1	45.1	612-737	7	3.0	0.8	2.1-4.5	7		
Pacific halibut	Male	846.4	72.2	723-937	10	5.7	1.6	3.3-8.5	10		
	Female	892.5		781-1004	2	6.9	3.7	4.2-9.5	2		
	All	854.1	82.7	723-1004	12	5.9	1.9	3.3-9.5	12		
Yellow Irish lord	Male	481.8	27.1	420-522	18	1.3	0.3	0.8-1.9	17		
	Female	353.0	NA	NA	1	0.5	NA	NA	1		
	All	474.7	40.2	353-522	18	1.2	0.3	0.5-1.9	18		

^aSD = Standard deviation, n = Sample size.

^bNot applicable.

Prey Name	%FO ^a	%C ^a	%WT ^a
Gastropoda (snail)	33.3	9.4	1.9
Octopoda (octopus)	33.3	6.3	4.7
Isopoda (isopod)	16.7	3.1	0.6
Gammaridea (amphipod)	16.7	12.5	0.8
Natantia (shrimp)	16.7	3.1	0.1
Caridea (shrimp)	83.3	50.0	14.5
Purple hermit (Elassochirus cavimanus)	16.7	3.1	13.8
Teleostei (fish)	16.7	3.1	11.1
Non-gadoid fish remains	16.7	6.3	2.1
Atka mackerel (Pleurogrammus monopterygius)	16.7	3.1	50.6

Table 9. Prey composition of stomach samples taken from Pacific cod caught during longline sets in the central Aleutian Islands, Alaska in 2009 (n = 6 non-empty stomachs).

^a%FO = Percent frequency of occurrence, %C = Percent of count, %WT = Percent total weight.

Table 10. Prey composition of stomach samples taken from Pacific halibut caught during longline sets in the central Aleutian Islands, Alaska in 2009 (n = 7 non-empty stomachs).

Prey Name	%FO ^a	%C ^a	%WT ^a
Gastropoda (snail)	14.3	12.5	4.3
Reptantia (crab)	14.3	12.5	2.6
Teleostei (fish)	42.9	37.5	30.0
Non-gadoid fish remains	28.6	25.0	14.8
Gadus macrocephalus (Pacific cod)	14.3	12.5	48.2

^a%FO = Percent frequency of occurrence, %C = Percent of count, %WT = Percent total weight.

Table 11. Prey composition of stomach samples taken from yellow Irish lord caught during longline sets in the central Aleutian Islands, Alaska in 2009 (n = 8 non-empty stomachs).

Prey Name	%FO ^a	$%C^{a}$	%WT ^a
Polychaeta (polychaete)	37.5	1.5	0.3
Polynoidae (polychaete)	12.5	0.5	0.0
Mollusca	25.0	2.0	3.2
Gastropoda (snail)	25.0	3.6	6.2
Buccinidae (snail)	12.5	0.5	2.0
Pandalus sp.	12.5	0.5	0.6
Paguridae (hermit crab)	25.0	1.0	0.2
Rhinolithodes wosnessenskii (Rhinoceros crab)	25.0	1.5	13.4
Oregonia gracilis (Graceful decorator crab)	12.5	0.5	2.3
Ophiuridae (brittle star)	87.5	87.8	71.1
Non-gadoid fish remains	12.5	0.5	0.7

 a %FO = Percent frequency of occurrence, %C = Percent of count, %WT = Percent total weight.

		То	ow Numb	er	Species
Туре	Scientific Name	VT01	VT02	VT03	Total
Annelida: Polychaeta	Syllidae family		1		1
Chaetognatha	Eukrohnia hamata	9	12	34	55
Chaetognatha	Sagitta elegans			1	1
Cnidaria: Hydrozoa	<i>Sarsia</i> sp.		Р		Р
Mollusca: Gastropoda	Limacina helicina		4	2	6
Crustacea: Amphipoda	Hyperia medusarum	1	1	21	23
Crustacea: Anomura	Anomuran zoea		3		3
Crustacea: Brachyura	Brachyuran zoea		6		6
Crustacea: Brachyura	Cheiragonidae megalopae unid.		1		1
Crustacea: Caridea	Caridean zoea		1		1
Crustacea: Caridea	Pasiphaea pacifica		3		3
Crustacea: Caridea	Pandalidae post larva	1			1
Crustacea: Caridea	Shrimp zoea	1			1
Crustacea: Cirripedia	Barnacle cyprid larvae		4		4
Crustacea: Copepod	Acartia longiremis		16		16
Crustacea: Copepod	Acartia sp.			496	496
Crustacea: Copepod	Eucalanus bungii	43	435	1411	1889
Crustacea: Copepod	Neocalanus plumchrus	168	187	722	1077
Crustacea: Copepod	Neocalanus sp.		15		15
Crustacea: Euphausiacea	Euphausiid unid. (juv.)	21	19	220	260
Crustacea: Euphausiacea	Thysanoessa longipes	1	2		3
Chordata: Larvacea	<i>Oikopleura</i> sp.		54	121	175
Chordata: Teleost	Fish egg		2		2
	Trawl Total	245	766	3028	4039

Table 12. Counts of individuals captured with plankton tows during SMMOCI sampling in the central Aleutian Islands in 2009.

Cast	Latitude (N)	Longitude (W)	Date	Time ^a	Depth ^b (m)	Notes ^c
00	52.0761°	175.8946°	16 July	11:52	90 (94)	BT01
01	52.1733°	176.0000°	16 July	17:09	100 (1400)	TX 01, north end
02	52.1707°	175.8318°	16 July	18:03	100 (1195)	TX 02, east end
03	52.1862°	175.7484°	16 July	18:42	100 (700)	TX 24, east end
04	52.0536°	175.9335°	16 July	20:50	70 (78)	BT02
06	52.0483°	175.9783°	17 July	16:09	16 (^d)	BT03
07	52.0588°	175.9081°	18 July	07:50	100 (101)	TX 26, Sta. 1 (south end)
08	52.1052°	175.9137°	18 July	08:32	80 (88)	TX 26, Sta. 2
09	52.1377°	175.9147°	18 July	08:58	80 (84)	TX 26, Sta. 3
10	52.1752°	175.8313°	18 July	09:52	100 (800)	TX 03, north end
11	52.0127°	175.8373°	18 July	11:08	100 (105)	TX 03, south end
12	51.9848°	175.7529°	18 July	11:44	90 (93)	TX 18, south end
13	52.1810°	175.7518°	18 July	13:27	100 (800)	TX 18, north end
14	52.1963°	175.6568°	18 July	14:00	100 (>1000)	TX 06, north end
16	51.9846°	175.6638°	18 July	15:34	50 (54)	TX 06, south end
17	51.9747°	175.5822°	18 July	16:02	35 (40)	TX 19, south end
18	52.2016°	175.5822°	18 July	17:40	100 (1020)	TX 19, north end
19	52.2270°	175.4990°	18 July	19:02	100 (>1000)	TX 08, north end
21	52.1483°	175.4952°	18 July	20:26	20 (25)	BT04
22	52.1408°	175.4850°	18 July	21:19	20 (26)	BT05, VT01
23	52.1329°	175.4953°	18 July	22:45	40 (50)	BT06, VT02
24	52.1488°	175.5432°	19 July	01:29	50 (57)	B T07
25	52.1635°	175.8728°	19 July	05:00	100 (>250)	MW01
26	52.1490°	175.5010°	19 July	08:58	15 (19)	TX 09, Sta. 1 (north end)
27	52.1077°	175.5057°	19 July	09:26	50 (58)	TX 09, Sta. 2
28	52.0737°	175.5053°	19 July	09:50	60 (62)	TX 09, Sta. 3
29	52.0397°	175.5008°	19 July	10:17	68 (79)	TX 09, Sta. 4
30	52.0075°	175.5020°	19 July	10:39	60 (61)	TX 09, Sta. 5 (south end)
32	51.9950°	175.3800°	19 July	11:23	36 (40)	TX 10, east end
33	52.0017°	175.4207°	19 July	16:32	40 (45)	TX 21, south end
34	52.2510°	175.4163°	19 July	18:08	100 (>1000)	TX 21, north end
35	52.1932°	175.4393°	19 July	20:54	50 (300)	MW02
36	52.1623°	175.5417°	19 July	22:09	30 (36)	LL02
37	52.1612°	175.3667°	20 July	00:39	100 (263)	MW03, VT03
38	52.1969°	175.1577°	20 July	02:31	100 (171)	BT08
39	52.1978°	175.1237°	20 July	03:44	100 (128)	BT09

Table 13. Locations, times and dates of CTD casts made in the central Aleutian Islands, Alaska in 2009.

Cast	Latitude (N)	Longitude (W)	Date	Time ^a	Depth ^b (m)	Notes ^c
40	52.3153°	174.9940°	20 July	08:27	100 (>1000)	TX 16, north end
41	52.1197°	175.0007°	20 July	09:55	76 (82)	TX 16, south end
42	52.0804°	175.1583°	20 July	10:47	80 (83)	TX 15, west end
43	52.2823°	175.1673°	20 July	12:17	100 (953)	TX 14, north end
44	52.2495°	175.3330°	20 July	13:15	100 (1600)	TX 12, Sta. 1 (north end)
45	52.2129°	175.3412°	20 July	13:42	100 (1262)	TX 12, Sta. 2
46	52.1793°	175.3375°	20 July	14:07	100 (660)	TX 12, Sta. 3
47	52.1445°	175.3382°	20 July	14:34	100 (168)	TX 12, Sta. 4
48	52.1122°	175.3370°	20 July	15:00	100 (120)	TX 12, Sta. 5
49	52.0788°	175.3368°	20 July	15:32	90 (103)	TX 12, Sta. 6
50	52.0450°	175.3380°	20 July	15:59	60 (70)	TX 12, Sta. 7 (south end)

Table 13. Locations, times and dates of CTD casts made in the central Aleutian Islands, Alaska in 2009 (continued).

^aAll times are Aleutian Daylight (Universal Coordinated Time minus 9 hours). ^bDepth of cast. Values in parentheses are bottom depth at cast location.

 $^{c}TX = Transect, MW = Mid-water Trawl, BT = Bottom Trawl, VT = Vertical Plankton Tow,$

LL = Longline Set.

^dNo data.

Table 14. Estimates of at-sea densities of seabirds near colonies at several Alaskan sites. Data are from cruises similar to the 2009 cruise discussed here and were gathered using similar procedures.

Colony Area	# birds/km ²	Reference
Cape Thompson / Chukchi Sea	54	Piatt et al. 1990
Norton Sound / Northeastern Bering Sea	13	Dragoo 2006 <i>b</i>
Pribilof Islands / Southeast Bering Sea (1997)	51	Dragoo and Byrd 1998
Pribilof Islands / Southeast Bering Sea (2005)	65 ^a	Dragoo 2009
Buldir Island / Western Aleutians	145	Dragoo and Byrd 1999
Kasatochi Island / Central Aleutians (1996)	110	Drew et al. 2003
Kasatochi Island / Central Aleutians (2003)	118	Dragoo 2007
Kasatochi Island / Central Aleutians (2009)	124	This Study
Aiktak Island / Unimak Pass, Eastern Aleutians	38	Byrd et al. 1997
Semidi Islands / Northern Gulf of Alaska (2001)	93 ^b	Dragoo 2006 <i>a</i>
Semidi Islands / Northern Gulf of Alaska (2004)	68	Dragoo 2006 <i>a</i>
Barren Islands / Lower Cook Inlet (1992)	174	Piatt 1994
Barren Islands / Lower Cook Inlet (1996)	126	Piatt 2003
Glacier Bay/ Southeast Alaska	21	Robards et al. 2003
St. Lazaria/ Sitka Sound, Southeast Alaska	18	Piatt and Dragoo 2005

^aDoes not include the circumnavigation of St. George Island. Bird density including St. George Island circumnavigation was 99 birds/km².

^bDoes not include a flock of approximately 50,000 shearwaters observed on transect. Bird density including this large flock of shearwaters was 476 birds/km².

Figure 1. Map of Alaska showing the location of the central Aleutian Islands study area (red dot).

Figure 2. Map of central Aleutian Islands study area. Dotted line represents the 50 fathom (91.4 m) depth contour.

Figure 3. Map of transects surveyed near Ulak, Kasatochi and Koniuji islands, Alaska in 2009. Transects shown were derived from GPS positions recorded during surveys.

Figure 4. Distribution of Laysan (LAAL) and black-footed (BFAL) albatrosses on transects surveyed in the central Aleutian Islands, Alaska in 2009. Includes birds on water and flying.

Figure 5. Distribution of mottled petrels (MOPE) and northern fulmars (NOFU) on transects surveyed in the central Aleutian Islands, Alaska in 2009. Includes birds on water and flying.

Figure 6. Distribution of sooty (SOSH), short-tailed (STSH) and unidentified (UNSH) shearwaters on transects surveyed in the central Aleutian Islands, Alaska in 2009. Includes birds on water and flying.

Figure 7. Distribution of fork-tailed (FTSP) and Leach's (LHSP) storm-petrels on transects surveyed in the central Aleutian Islands, Alaska in 2009. Includes birds on water and flying.

Figure 8. Distribution of red-faced (RFCO), pelagic (PECO) and unidentified (UNCO) cormorants on transects surveyed in the central Aleutian Islands, Alaska in 2009. Includes birds on water and flying.

Figure 9. Distribution of red-necked (RNPH) and red (REPH) phalaropes on transects surveyed in the central Aleutian Islands, Alaska in 2009. Includes birds on water and flying.

Figure 10. Distribution of glaucous-winged gulls (GWGU) and black-legged kittiwakes (BLKI) on transects surveyed in the central Aleutian Islands, Alaska in 2009. Includes birds on water and flying.

Figure11. Distribution of common (COMU), thick-billed (TBMU) and unidentified (UNMU) murres on transects surveyed in the central Aleutian Islands, Alaska in 2009. Includes birds on water and flying.

Figure12. Distribution of pigeon guillemots (PIGU) and ancient murrelets (ANMU) on transects surveyed in the central Aleutian Islands, Alaska in 2009. Includes birds on water and flying.

Figure 13. Distribution of Cassin's (CAAU) and parakeet (PAAU) auklets on transects surveyed in the central Aleutian Islands, Alaska in 2009. Includes birds on water and flying.

Figure 14. Distribution of least (LEAU) and whiskered (WHAU) auklets on transects surveyed in the central Aleutian Islands, Alaska in 2009. Includes birds on water and flying.

Figure 15. Distribution of crested (CRAU) and unidentified (UNAU) auklets on transects surveyed in the central Aleutian Islands, Alaska in 2009. Includes birds on water and flying.

Figure 16. Distribution of horned (HOPU) and tufted (TUPU) puffins on transects surveyed in the central Aleutian Islands, Alaska in 2009. Includes birds on water and flying.

Figure 17. Distribution of Dall's porpoise (DAPO) on transects surveyed in the central Aleutian Islands, Alaska in 2009.

Figure 18. Distribution of prey in the water column (10-50 m) based on acoustic surveys in the central Aleutian Islands, Alaska in 2009 (NASC = Nautical Area Scattering Coefficient – $m^2/nautical mile^2$).

Figure 19. Distribution of prey in the water column (10-100 m) based on acoustic surveys in the central Aleutian Islands, Alaska in 2009 (NASC = Nautical Area Scattering Coefficient – $m^2/nautical mile^2$).

Figure 20. Distribution of prey in the water column (10-250 m) based on acoustic surveys in the central Aleutian Islands, Alaska in 2009 (NASC = Nautical Area Scattering Coefficient – $m^2/nautical mile^2$).

Figure 21. Locations of fishing efforts in the central Aleutian Islands, Alaska in 2009. VERT = vertical plankton tow, LOLI = longline, BOTR = bottom trawl, MWTR = mid-water trawl.

Figure 22. Size distribution of the three most abundant fish species caught with bottom trawl during SMMOCI sampling in the central Aleutian Islands, Alaska in 2009.

Figure 23. Size distribution of the three species caught with longlines during SMMOCI sampling in the central Aleutian Islands, Alaska in 2009.

Figure 24. Locations of CTD stations sampled in the central Aleutian Islands, Alaska in 2009. Dotted line represents the 50 fathom (91.4 m) depth contour.

Figure 25. CTD temperature (left) and salinity (right) profiles obtained from central Aleutian Islands, Alaska transect 9 (top), transect 12 (middle) and transect 26 (bottom) in 2009.

Figure 26. CTD temperature (left) and salinity (right) profiles obtained from central Aleutian Islands, Alaska north (top) and south (bottom) lines in 2009.

Figure 27. Sea surface temperature (top) and salinity (bottom) interpolated from thermosalinograph records on transects surveyed in the central Aleutian Islands, Alaska in 2009.